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Abstract

After observing that the well-known convexity theorems of symplectic geometry also hold for
compact contact manifolds with an effective torus action whose Reeb vector field corresponds to an
element of the Lie algebra of the torus, we use this fact together with a recent symplectic orbifold
version of Delzant’s theorem due to Lerman and Tolman [E. Lerman, S. Tolman, Trans. Am. Math.
Soc. 349 (10) (1997) 4201-4230] to show that every such compact toric contact manifold can be
obtained by a contact reduction from an odd dimensional sphere. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The main purpose of this note is to prove a Delzant-type theorem [8] which says that every
compact toric contact manifold whose Reeb vector field corresponds to an element of the Lie
algebra of the torus (a condition we caflReeb typecan be obtained by contact reduction
from an odd dimensional sphere. This result makes use of the symplectic orbifold version
of Delzant’s theorem by Lerman and Tolman [15], thereby showing the close relationship
between the two. Toric contact geometry has been previously considered by Banyaga and
Molino [2,3]. They show that there are two cases: (1) The action of the torus is regular in
which case the image of the moment map is a sphere. Thus,*08 the original contact
manifold is the product”*! x §”. (2) The action is singular in which case the image
generates a closed convex polytope. Then Banyaga and Molino give a Delzant-type theorem
by showing that this polytope determines the toric contact structure up to isomorphism. But
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they do not prove that every such manifold can be obtained from reduction. Indeed, this
may not be true. However, if one makes the added assumption that the Reeb vector field
corresponds to an element of the Lie algebra of the torus, such a result is true as we shall
show. While [2,3] do consider this case they do not prove such a result since their proofs
are entirely different from the usual proofs of the Delzant theorems in symplectic geometry
[8,13,15] which make use of reduction.

We begin by reviewing some well-known facts about contact manifolds and symplectic
cones. We then discuss the moment maps associated to toral actions. In particular, we show
that the well-known convexity theorem of Atiyah [1], Guillemin and Sternberg [12] hold
for compact contact manifolds of Reeb type, a result given previously in the toric case
by Banyaga and Molino [2,3]. In contact geometry we need to fix a contact 1-form, i.e.
a Pfaffian structure, within the contact structure. Doing so we show that a torus that acts
effectively on a compact contact manifold and preserves the Pfaffian form gives rise to a
moment map whose image is a convex polytope lying in a certain hyperplane, which we
call thecharacteristic hyperplanen the dual of the Lie algebra of the torus. If one changes
the Pfaffian form by a function which is invariant under the torus, the resulting polytope
then differs from the former by a change of scale. Indeed, it is always possible to choose
the Pfaffian form so that the polytope is rational. Following Lerman and Tolman we also
give a theorem relating the geometry of labeled polytopes to the geometry of the contact
manifold with a fixed Pfaffian structure with its torus action and characteristic foliation.

Our motivation for this study is that of obtaining explicit positive Einstein metrics using
methods of contact geometry that the authors have recently developed [4—7]. In a forthcom-
ing work we investigate precisely which toric contact manifolds admit Sasakian—Einstein
metrics.

2. Symplectic cones and contact manifolds

Definition 2.1. A contact structure@n a manifoldV of dimension 2 41 is a subbundl®,
called the contact distribution, of the tangent buritiéwhich is maximally nonintegrable.

When M is orientable, which we shall always assume, the contact distribution can be
given as the kernel of an 1-formthat satisfies the nondegeneracy condition

nA(dn)" #0 (2.1)

and d; is a symplectic form on the subbundi® It should be realized, however, that the
contact structure is defined not hybut by an equivalence class of such 1-forms. Explicitly,
two such 1-forms;, n’ are equivalent if there exists a nowhere vanishing funcfiam M
suchthay’ = fn. For usitwill often be convenient to fix a contact forrin the equivalence
class. In [14] this is referred to asPdaffian structure

Definition 2.2. A symplectic coné a coneC(M) = M x R with a symplectic structure
o with a one parameter groyp of homotheties ofv whose infinitesimal generator is a
vector field onR™.
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Definition 2.2 is referred to as a symplectic Liouville structure in [14]. We denote by
the coordinate ofR™ in which case the infinitesimal generator of the homothety group is
the Liouville vector fieldl = rd,. Define the one fornj onC(M) by 7 = ¥ |w. As W is
an infinitesimal generator of homothetieswoit follows thatw is the exact 2-fornn = d7.

Let us identifyM with M x {1}, and define; = 7|y 13- Then we see that = rp, and
this givesw as

w=dr An+rdn. (2.2)

The condition thato"t1 £ 0 implies thaty gives M the structure of a contact manifold
with a fixed 1-form, i.e. (2.1) is satisfied. Conversely, one can easily reverse this procedure:
given a contact manifold with a fixed 1-for(a4, n), definingw on C(M) by (2.2) gives

the coneC (M) a symplectic structure with homotheties. In [9,16](M), w) is called the
symplectizatiof M, while it is called thesymplectificatiorof M in [14]. The terminology

is apparently due to Arnold. We have arrived at the well-known result.

Proposition 2.3. An orientable manifoldorbifold) is a contact manifoldorbifold) if and
only if the coneC (M) = M x RT is a symplectic cone

Now a contact manifold with a fixed 1-formhas associated to it a unique vector field
called thecharacteristicor Reeb vector fiel§ defined by the conditions

nE =1 &ldp=0. 2.3)

Clearly & is nowhere vanishing o/ and thus induces a foliatio® of M called the
characteristic foliation It should be mentioned that bot¢hand its characteristic foliation
depend on the choice of 1-formi.e. they are invariants of the Pfaffian structure, but not the
contact structure. Conversely, a characteristic vector field uniquely determines the 1-form
n within the contact structur®.

3. Contact transformations

Let M be an orientable contact manifold, and &/, D) denote the group of contact
transformations, i.e., the subgroup of the group O of diffeomorphisms of¢ that
leaves the contact distributidn invariant. If we fix a contact formy such thatD = kern,
then®(M, D) can be characterized as the subgroup of diffeomorphismal — M that
satisfy¢*n = fn for some nowhere vanishing € C°°(M). With the 1-formpy fixed
we are interested in the subgro@pV, n) of strict contact transformationdefined by the
conditiong*n = n. Likewise, we denote the “Lie algebras” 6fM, D) and&(M, n) by
c«(M, D) andc(M, n), respectively. They can be characterized as follows:

¢(M,D) ={X e (M)|Lxn = gnforsomeg € C*(M)},

«(M,n) ={X e "(M)|Lxn =0},
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whereI’ (M) denotes the Lie algebra of smooth vector fieldsnClearly,c(M, n) is a
Lie subalgebra of(M, D). In contrast to the symplectic case, every infinitesimal contact
transformation is Hamiltonian. More explicitly, we have the following proposition.

Proposition 3.1[14]. The contact 1-form; induces a Lie algebra isomorphisi be-
tween the Lie algebraM, D) of infinitesimal contact transformations and the Lie algebra
C*° (M) of smooth functions with the Jacobi bracket defined by

@ (X) = n(X).

Furthermore, under this isomorphism the subalget(d®, ») is isomorphic to the subal-
gebraCc®>(M)# of functions inC* (M) that are invariant under the flow generated by the
Reeb vector field. In particular, £ = ®~1(1).

The functionn(X) is known as a&ontact Hamiltonian function

Similarly, on C(M) we let 5(C(M), w) denote the group of symplectomorphisms of
(C(M), w), andSo(C (M), w) the subgroup o6 (C (M), w) that commutes with homoth-
eties, i.e., the automorphism group of the symplectic Liouville structure. The corresponding
Lie algebras are denoted b§C (M), w) andso(C (M), w), respectively. Given a vector field
X € 50(C(M), w), the fact thatY commutes with the Liouville vector field implies that
X is projectable to a vector field,, on M and one easily sees that the following proposition
holds [14].

Proposition 3.2. The mapsX — Xy +— n(Xypy) induce Lie algebra isomorphisms
50(C(M), w) = (M, n) = C®(M)%. Furthermore & is in the center of (M, 7).

4. Convexity and the moment map

We now consider the moment map constructionddM ) andM. Let & be a Lie group
acting on the symplectic con€ (M), w) which leaves invariant the symplectic foeorand
which commutes with the homothety group. In particutéris a subgroup of the group
So(C(M), w) and gives rise to a moment map

f:C(M) — g*, (4.1)
whereg denotes the Lie algebra &f andg* its dual. Explicitly & is defined by
d(fi, 1) = X" o, (4.2)

where X* denotes the vector field ofi(M) corresponding ta € g. For simplicity we
denote the functiori, t) by 7. An easy computation then shows that up to an additive
constant,

A" = i(X"). (4.3)
With this choiceix is clearly homogeneous. Indeed, under homotheties € r we have

o~ o, 0~ €n, i €.



292 C.P. Boyer, K. Galicki/ Journal of Geometry and Physics 35 (2000) 288-298

Now consider the case when the Lie gratigs a torust with Lie algebrat. Then there is
the following convexity theorem [10].

Theorem 4.1[10]. Let (C(M), w) be a symplectic cone with M compact, and detc
So(C(M), w) be a torus group. Assume further that there is an elemeatt such that
(u, T) > 0.Then the image (C(M)) is a convex polyhedral cone

Now let us return to the case of an arbitrary Lie grabipc So(C (M), w). Again we
identify M with M x {1}. Since® commutes with homotheties we get an induced action of
® on M, and by Proposition 3.2 we can identi#ywith a Lie subgroup of(M, ). This
gives a moment map by restriction, viz.

wiM— g,
= ftlmxy 't =n(X"). (4.4)

Such a moment map was noticed previously by Geiges [11] and in [6] within the context
of 3-Sasakian geometry.

We wish to consider the special case when the Lie gdigann + 1-dimensional torus
%7+l Lett,1 denote the Lie algebra 6'*+1, and let{e; _, denote the standard basis for
t,41 ~ R"*1 Corresponding to each basis elemerthere is a vector fiel& ¢ which for
convenience we denote 1#;. We shall assume that the Reeb vector fiettbrresponds to
an element, which we call thecharacteristic vectarin the Lie algebra, 1. Hence, the
Reeb vector field is almost periodic. In this case we say that the torus actibRégb type
Let{e;}]_, denote the dual basis gjf, ;. Then we can write the corresponding characteristic
vectorg and moment map as

s = Zaiei, = Zlh’e;‘k (4.5)
i=0 i=0
for someq; € R. Then the moment map mapsc to the hyperplane given by
(n,s) = Zuiai =1 (4.6)
i=0

We call this hyperplanthe characteristic hyperplan&he nondegeneracy gfimplies that
the plane defined by (4.6) is actually a hyperplane, i.e., its codimension is 1. Now there is
a commutative diagram

C(M) )
1 A 4.7
M 5 ¢

n+1°

where the vertical arrow is the natural inclusigninto C (M) asM x {1}. Thus, intersecting
the characteristic hyperplane (4.5) with the convex cone of Theorem 4.1 we arrive at the
following theorem.
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Theorem 4.2. Let (M, n) be a compact contact manifold with a fixed contact fgrrand
let u be the moment map of a torG@sacting effectively o/ which preserves the contact
form n. Suppose also that the Reeb vector figldorresponds to an element of the Lie
algebrat of ¥, so that the torus action is of Reeb type. Then the image) is a convex
compact polytope lying in the characteristic hyperplane

This theorem was proved earlier by a different method by Banyaga and Molino [2,3],
and they also give an example due to Lutz which shows that the assumption on the Reeb
vector field is necessary.

We are mainly interested in rational polytopes. ket t denote the lattice of circle
subgroups off. We recall some definitions for convex polytopes [13,15,19].

Definition 4.3. A facetis a codimension 1 face. A convex polytope of dimensigmncalled
simpleif there are precisely facets meeting at each vertex. A convex polytape t* is
rational if, for somei; € R, there arey; € ¢ such that

N
A =(Nfo € (e yi) < M),
i=1
whereN is the number of facets af.

We are now ready for the following theorem.

Theorem 4.4. Under the hypothesis of Theoreh?, the polytopeu (M) C t* is simple of
dimensiondimt — 1, and it is rational if and only if the characteristic vectarlies in the
lattice ¢ C t of circle subgroups of.

Proof. The nondegeneracy gfimplies that the dimension of the polytopeis dimt — 1,

and the fact that is the intersection of a convex polyhedral cone and a hyperplane implies
thatA is simple. To verify the rationality condition consider the characteristic foligfién

The space of leaveg is a compact orbifold if and only i€ is in the lattice¢. So by the
guasi-regular version [17] of the Boothby—Wang fibration, this orbifold has a symplectic
structure. Moreover, sindds Abelian and contains, there is a Lie algebraacting onZ

by infinitesimal symplectomorphisms which fits into the exact sequence

0— {¢} > t31 >0,
where{c¢} denotes the Lie algebra generatedshyConsider the dual sequence
0— 8% > () — 0. (4.8)

By a theorem of Lerman and Tolman [15] there is a moment fnag — t* whose image
in £ is a rational convex polytopa. Furthermore, ifr : M — Z denotes the orbifold
V-bundle map and the symplectic form org we have thatr*w = dn. It follows that
o *r* i differs fromu by a constant € t*, i.e.

w=w T i +c. (4.9)
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Moreover, sincex maps into the characteristic hyperplansatisfies(c, ¢) = 1. Let A
denote the polytope(M). From Definition 4.3 we see that the polytopeis rational if
and only if we can choose the to lie in £. But sinceA is rational andx € A if and only
if « — ¢ € A, there arey; € ¢ such thatA is determined by@, y;) < ;. Thus,A is given
by the equation

N
(e € 1, yi) < hi =i + (e, yi)),
i=1

which is clearly rational. O

For quasi-regular contact Pfaffian structures Eq. (4.9) gives the fundamental relation
between our contact moment map and the moment map for compact symplectic orbifolds
described by Lerman and Tolman. Moreover, in [15] it is shown that the polytopas
labels associated with each facet. The outward normal vectortheith facet f, of A lies
in £, so there is a positive integer; and a primitive vectop; € ¢ such thaty; = m; p;.

Thus, by associating; to theith facetf; for eachi = 1, ... , N we obtainA as a labeled
polytope. But from the discussion above the outward normate theith facet f; of A
coincide with the outward normals t§ of A, so thatA is also a labeled polytope with
the integersn; associated to thiah facetf;. Thus an immediate consequence of (4.9) and
Lemma 6.6 of [15] is the following theorem.

Theorem 4.5. Let (M, ) be a contact manifold with a fixed quasi-regular contact farm
with an effective action of a toru$s of Reeb type that leaves the 1-forninvariant. For
every pointc € M let F(x) denote the set of open facetsofvhose closure contains(x)
and letm; and p; denote the labels and primitive outward normal vectors to the ith facet.
Then the Lie algebrd, of the isotropy subgroug, of ¥ at x is the linear span of the
vectorsp; for all i such that the ith open facet lies in F(x). In particular, if u(x) is a
vertex of the polytopa, then$y, is isomorphic to the factor group/S1(&), wheres(¢)
denotes the circle subgroup generated by the characteristic vectokfi€larthermore, A
is the convex hull of its vertices

Lete, € b, denote the lattice of circle subgroups$f and let¢, denote the sublattice
of £ generated by the vectofs:; p;} r,.cr(x). Then the leaf holonomy group atof the
characteristic foliation* is isomorphic to@x/ix. In particular, (M, n) is regular if and
only if the sel{m; p;} r,cr(») generated, for all x € M (in this casen; = 1Vi).

We now consider varying the contact forprwithin the contact structure. Let = fn
wheref is a nowhere vanishing function @, and lett’ be the Reeb vector field associated
ton’. Write &’ = & + p. Suppose further that € c¢(M, ). Then we have the following
elementary lemma whose proof we leave to the reader:

Lemma 4.6. The following hold:
(i) f =1/(n(p) +D);
(i)) pldn = =d(n(p)) +&Em(p))n;
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(i) L,n = Len = EM(p))n,i.e., bothe” andp are infinitesimal contact transformations
(iv) &, p € ¢«(M, n) ifand only if f € C®(M)E;
(V) X € ¢«(M, ) if and only if Xf= 0.

We return to the case whei, i) is a contact manifold with an + 1)-torus ¥"+1
acting as strict contact transformations whose characteristic vedigs in the Lie algebra
t,.1. The moment map for this torus action is given by (4.5) with= n(H;). If n' = fn
is another 1-form in same contact structure wherg invariant under the torus action, then
this action preserves as well, and the corresponding moment magatisfiesu’ = f .
Let A be the polytope associated withThen the polytop@\” associated tg” has the same
dimension ag\ with the same number of facets and the same number of vertices. The size
of the faces and labels, however, depend on the contactfoiren on the Pfaffian structure,
and the labels are defined only wheis quasi-regular. But in the projective spae”+*
the lines through the origin i)+ 1 that intersect the latticéof circle subgroups are dense,
so from the point of view of the contact structure we can always perturb the Reeb vector
field and contact form so that the characteristic foliation is quasi-regular, and by Theorem
4.4 so that the polytope is rational. We are ready for the following definition.

Definition 4.7. A contact manifold (orbifoldYM, D) of dimension 2 + 1 is called &aoric
contact manifold(orbifold) (written as the triple(M, D, %)) if there is a 1-formy that
represents the contact structdPeand an effective action of a@ + 1)-dimensional torus
T on M that preserves the contact fommIf in addition the Reeb vector field associated
to n corresponds to an element of the Lie algebod T, we say thatM, D, ) is atoric
contact manifold of Reeb type

If we wish to fix a contact forry we write (M, n, %) for a toric contact manifold instead
of (M, D, ¥). Our discussion above proves the following proposition.

Proposition 4.8. Let (M, D, ¥) be a compact toric contact orbifold of Reeb type, tfien
can be represented by a quasi-regular contact form, and hence, by a rational polytope

The fiduciary examples of compact contact manifolds are the odd dimensional spheres
SZn+l_

Example 4.9. $2*+1 with the standard contact structure. This is the contact structure in-
duced from the standard symplectic structureR#i*2 given in Cartesian coordinates
(x07 }’0, sty xna }’n) € R2n+2 by

n
w = Zdei A dy;.
i=0
In this case the standard contact fognand the standard characteristic vector figldre
given by

1 n n
n= ?2(’“ dyi —yidy;), &= _Z;xiayi — Vidy,),
1= 1=
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wherer = Y""_o(x2 + y?) (not the usuat). The maximal toru§”+1 is generated by the
vector fieldsH; = x;9,, — yidy, fori =0, ... ,n, so(52'*t1 p) is a toric contact manifold.
The moment map is easily seen to be

1 n
(X0, Y0, -+ Xns Yn) = = ) (x4 yP)e
"i2o

Lettingro, ... , r, denote the coordinates fgf, ; we see that the characteristic hyperplane
is just

ro+---+r,=1
Thus, the imagg (§%'11) is just the standanet-simplex withr;’s as barycentric coordinates.

Now we can consider non-standard characteristic vector fields and Pfaffian forms within
the standard contact structure % 1. These are deformations [18] of the standard form
depending om + 1 positive real parametefsy, ... ,a,) € (RT)**1 In this case the
1-formn and characteristic vector fields are given by

Yo o(xidy; — yidx;)
S gai (x2 + y?)

n
Na = . Ea= ) ai(xdy, — yidy,),
i=0

so that

r
Na=\—=—""—">5>5_ |1
(Z?:Oai(xiz"‘yiz))

The characteristic hyperplane is

n
Zairi =1
i=0

so the polytope is given by the “weighted*simplex determined by this and

1
O<r <—.
a;
The special case whetg = a foralli =0, ... , nis just the dilated standardsimplex

1
a(ro+---+rm)=1 0=r=-.
a

5. A Delzant theorem for toric contact manifolds of Reeb type

We begin by considering contact reduction [6,11]. e, 77) be a compact contact man-
ifold with a fixed quasi-regular contact forin Suppose also that a compact Lie grasip
acts onM preserving the contact foriand letu : M — g* denote the corresponding mo-
ment map. Then i& acts freely on the zero spt"1(0)<> M, the quotient = p~1(0)/®
is a compact contact manifold with a unique fixed 1-foyreatisfyingc*n = p*n, where
p: n~1(0) - M denotes the natural projection.

We shall prove the following theorem.
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Theorem 5.1. Let(M, n, ¥) be a compact toric contact manifold of Reeb type and a fixed
quasi-regular contact forny. Then(M, n) is isomorphic to the reduction by a torus of a
spheres2V¥—1 with its standard contact structure and with a fixedorm 7.

Proof. Now M is compact of dimension, sayr2+- 1, and since; is quasi-regular, the
space of leave€ of the characteristic foliatiodF is a compact symplectic orbifold of
dimension 2. Furthermore, sinc#/ is toric, so isZ, i.e. there is an dimensional torug”
preserving the symplectic structugeon Z. Furthermore, by [5} represents an integral
class ianrb(Z, 7) and M is the total space of the principaf V-bundle ¥ 5 Z whose
first Chern class is represented by € 7*w.

Now by Theorem 8.1 of Lerman and Tolman [18}, w) is isomorphic to the sym-
plectic reduction(CY, wp) with the standard symplectic structure by a to@$" of
dimensionN — n. If uy_, : CN — ty_, denotes the moment map for tAd " ac-
tion, then(Z, w) is isomorphic to(ulj,l_n(k)/fN‘",c?)) where A is a regular value of
un—n and® is the unique symplectic 2-form induced by reduction. tetlenote the
above isomorphism. It follows that the cohomology clas$ct (¢~ 1)*w is integral in
ngb(NX/l—n (A)/ZN-" 7). By the orbifold version of the Boothby—Wang theorem there is
anstVv-bundler : P — ,u;{n (A)/ZN—" aconnection forn on P such that ¢ = 7*&.
Thus there is as*-equivariant V-bundle map

M 2 P
4 7 (5.1)
z L gt oy/EN

such thatp*dn = dn. Thus,¢*n andn differ by a closed 1-form. But the space of closed
1-forms onM is path-connected, so one can find a one parameter family of connections
having the same curvature that connetf) to n. So by Gray’s stability theorem [16]

¢*1 andn define the same contact structure. Thus, we can chpbose- . Moreover, by
equivariance the characteristic vectasf the contact manifoldP, ) lies in the Lie algebra
tn_n, SO We can split off the circle that it generates and vEite™” = SS% x TN-1=1 \where
gN-n-1is an(N — n — 1)-dimensional torus. It follows thaP = 3t (1)/FV—"1.
Hereafter, we identifyM, n) with (.t () /T¥ "1, 7). Now | (1) is a torus bundle

over acompact manifold, soitis a compact manifold which by construction is an intersection
of N —n real quadrics irC" . It follows that there is a component of the moment map.,,

which takes the form ; a; |z; |2witha; > Oforalli. Letadenote the vector iR whoseith
component ig;, and consider the ellipsoly = {>_;a; 1zi|2 = 1} = $2V-1 Then thereis
aZN~"-moment mapy : Ta — ty_, such thatvgl(O) = u;{ﬂ(k). Furthermore, letting

no = y_;(x; dy; — y; dx;) we see that g = wp on CN and thatno|s, = 7alx,, where

na is the deformed 1-form of Example 4.9. Thus, letting ux,in(k) — M denote the
natural submersion, and Mg,l_n (L) — X the natural inclusion, we see thaitn = (*n3,
so(M, n) is obtained from(X3, n4) by contact reduction. O
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Now Theorem 9.1 of [15] says that every symplectic toric orbifold possesses an invariant
complex structure which is compatible with its symplectic form. This means that every
symplectic toric orbifold is actually Kahler and we can combine this fact with our results
to get the following theorem.

Theorem 5.2. Every compact toric contact manifold of Reeb type admits a compatible
invariant Sasakian structure
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