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Abstract

After observing that the well-known convexity theorems of symplectic geometry also hold for
compact contact manifolds with an effective torus action whose Reeb vector field corresponds to an
element of the Lie algebra of the torus, we use this fact together with a recent symplectic orbifold
version of Delzant’s theorem due to Lerman and Tolman [E. Lerman, S. Tolman, Trans. Am. Math.
Soc. 349 (10) (1997) 4201–4230] to show that every such compact toric contact manifold can be
obtained by a contact reduction from an odd dimensional sphere. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The main purpose of this note is to prove a Delzant-type theorem [8] which says that every
compact toric contact manifold whose Reeb vector field corresponds to an element of the Lie
algebra of the torus (a condition we callof Reeb type) can be obtained by contact reduction
from an odd dimensional sphere. This result makes use of the symplectic orbifold version
of Delzant’s theorem by Lerman and Tolman [15], thereby showing the close relationship
between the two. Toric contact geometry has been previously considered by Banyaga and
Molino [2,3]. They show that there are two cases: (1) The action of the torus is regular in
which case the image of the moment map is a sphere. Thus, forn ≥ 3 the original contact
manifold is the productT n+1 × Sn. (2) The action is singular in which case the image
generates a closed convex polytope. Then Banyaga and Molino give a Delzant-type theorem
by showing that this polytope determines the toric contact structure up to isomorphism. But
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they do not prove that every such manifold can be obtained from reduction. Indeed, this
may not be true. However, if one makes the added assumption that the Reeb vector field
corresponds to an element of the Lie algebra of the torus, such a result is true as we shall
show. While [2,3] do consider this case they do not prove such a result since their proofs
are entirely different from the usual proofs of the Delzant theorems in symplectic geometry
[8,13,15] which make use of reduction.

We begin by reviewing some well-known facts about contact manifolds and symplectic
cones. We then discuss the moment maps associated to toral actions. In particular, we show
that the well-known convexity theorem of Atiyah [1], Guillemin and Sternberg [12] hold
for compact contact manifolds of Reeb type, a result given previously in the toric case
by Banyaga and Molino [2,3]. In contact geometry we need to fix a contact 1-form, i.e.
a Pfaffian structure, within the contact structure. Doing so we show that a torus that acts
effectively on a compact contact manifold and preserves the Pfaffian form gives rise to a
moment map whose image is a convex polytope lying in a certain hyperplane, which we
call thecharacteristic hyperplane, in the dual of the Lie algebra of the torus. If one changes
the Pfaffian form by a function which is invariant under the torus, the resulting polytope
then differs from the former by a change of scale. Indeed, it is always possible to choose
the Pfaffian form so that the polytope is rational. Following Lerman and Tolman we also
give a theorem relating the geometry of labeled polytopes to the geometry of the contact
manifold with a fixed Pfaffian structure with its torus action and characteristic foliation.

Our motivation for this study is that of obtaining explicit positive Einstein metrics using
methods of contact geometry that the authors have recently developed [4–7]. In a forthcom-
ing work we investigate precisely which toric contact manifolds admit Sasakian–Einstein
metrics.

2. Symplectic cones and contact manifolds

Definition 2.1. A contact structureon a manifoldM of dimension 2n+1 is a subbundleD,
called the contact distribution, of the tangent bundleTM which is maximally nonintegrable.

WhenM is orientable, which we shall always assume, the contact distribution can be
given as the kernel of an 1-formη that satisfies the nondegeneracy condition

η ∧ (dη)n 6= 0 (2.1)

and dη is a symplectic form on the subbundleD. It should be realized, however, that the
contact structure is defined not byη, but by an equivalence class of such 1-forms. Explicitly,
two such 1-formsη, η′ are equivalent if there exists a nowhere vanishing functionf onM

such thatη′ = f η. For us it will often be convenient to fix a contact formη in the equivalence
class. In [14] this is referred to as aPfaffian structure.

Definition 2.2. A symplectic coneis a coneC(M) = M ×R+ with a symplectic structure
ω with a one parameter groupρt of homotheties ofω whose infinitesimal generator is a
vector field onR+.
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Definition 2.2 is referred to as a symplectic Liouville structure in [14]. We denote byr

the coordinate onR+ in which case the infinitesimal generator of the homothety group is
the Liouville vector field9 = r∂r . Define the one form̃η onC(M) by η̃ = 9cω. As 9 is
an infinitesimal generator of homotheties ofω it follows thatω is the exact 2-formω = dη̃.
Let us identifyM with M × {1}, and defineη = η̃|M×{1}. Then we see that̃η = rη, and
this givesω as

ω = dr ∧ η + r dη. (2.2)

The condition thatωn+1 6= 0 implies thatη givesM the structure of a contact manifold
with a fixed 1-form, i.e. (2.1) is satisfied. Conversely, one can easily reverse this procedure:
given a contact manifold with a fixed 1-form(M, η), definingω on C(M) by (2.2) gives
the coneC(M) a symplectic structure with homotheties. In [9,16](C(M), ω) is called the
symplectizationof M, while it is called thesymplectificationof M in [14]. The terminology
is apparently due to Arnold. We have arrived at the well-known result.

Proposition 2.3. An orientable manifold(orbifold) is a contact manifold(orbifold) if and
only if the coneC(M) = M × R+ is a symplectic cone.

Now a contact manifold with a fixed 1-formη has associated to it a unique vector field
called thecharacteristicor Reeb vector fieldξ defined by the conditions

η(ξ) = 1, ξc dη = 0. (2.3)

Clearly ξ is nowhere vanishing onM and thus induces a foliationF ξ of M called the
characteristic foliation. It should be mentioned that bothξ and its characteristic foliation
depend on the choice of 1-formη, i.e. they are invariants of the Pfaffian structure, but not the
contact structure. Conversely, a characteristic vector field uniquely determines the 1-form
η within the contact structureD.

3. Contact transformations

Let M be an orientable contact manifold, and letC(M,D) denote the group of contact
transformations, i.e., the subgroup of the group Diff(M) of diffeomorphisms ofM that
leaves the contact distributionD invariant. If we fix a contact formη such thatD = kerη,
thenC(M,D) can be characterized as the subgroup of diffeomorphismsφ : M → M that
satisfyφ∗η = f η for some nowhere vanishingf ∈ C∞(M). With the 1-formη fixed
we are interested in the subgroupC(M, η) of strict contact transformationsdefined by the
conditionφ∗η = η. Likewise, we denote the “Lie algebras” ofC(M,D) andC(M, η) by
c(M,D) andc(M, η), respectively. They can be characterized as follows:

c(M,D) = {X ∈ 0(M)|LXη = gη for someg ∈ C∞(M)},

c(M, η) = {X ∈ 0(M)|LXη = 0},
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where0(M) denotes the Lie algebra of smooth vector fields onM. Clearly,c(M, η) is a
Lie subalgebra ofc(M,D). In contrast to the symplectic case, every infinitesimal contact
transformation is Hamiltonian. More explicitly, we have the following proposition.

Proposition 3.1 [14]. The contact 1-formη induces a Lie algebra isomorphism8 be-
tween the Lie algebrac(M,D) of infinitesimal contact transformations and the Lie algebra
C∞(M) of smooth functions with the Jacobi bracket defined by

8(X) = η(X).

Furthermore, under this isomorphism the subalgebrac(M, η) is isomorphic to the subal-
gebraC∞(M)ξ of functions inC∞(M) that are invariant under the flow generated by the
Reeb vector fieldξ . In particular, ξ = 8−1(1).

The functionη(X) is known as acontact Hamiltonian function.
Similarly, onC(M) we letS(C(M), ω) denote the group of symplectomorphisms of

(C(M), ω), andS0(C(M), ω) the subgroup ofS(C(M), ω) that commutes with homoth-
eties, i.e., the automorphism group of the symplectic Liouville structure. The corresponding
Lie algebras are denoted bys(C(M), ω) ands0(C(M), ω), respectively. Given a vector field
X ∈ s0(C(M), ω), the fact thatX commutes with the Liouville vector field9 implies that
X is projectable to a vector fieldXM onM and one easily sees that the following proposition
holds [14].

Proposition 3.2. The mapsX 7→ XM 7→ η(XM) induce Lie algebra isomorphisms
s0(C(M), ω) ≈ c(M, η) ≈ C∞(M)ξ . Furthermore, ξ is in the center ofc(M, η).

4. Convexity and the moment map

We now consider the moment map construction forC(M) andM. LetG be a Lie group
acting on the symplectic cone(C(M), ω) which leaves invariant the symplectic formω and
which commutes with the homothety group. In particular,G is a subgroup of the group
S0(C(M), ω) and gives rise to a moment map

µ̃ : C(M) → g∗, (4.1)

whereg denotes the Lie algebra ofG andg∗ its dual. Explicitlyµ̃ is defined by

d〈µ̃, τ 〉 = −Xτ cω, (4.2)

whereXτ denotes the vector field onC(M) corresponding toτ ∈ g. For simplicity we
denote the function〈µ̃, τ 〉 by µ̃τ . An easy computation then shows that up to an additive
constant,

µ̃τ = η̃(Xτ ). (4.3)

With this choiceµ̃ is clearly homogeneous. Indeed, under homothetiesr 7→ et r we have

ω 7→ etω, η̃ 7→ et η̃, µ̃ 7→ et µ̃.
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Now consider the case when the Lie groupG is a torusT with Lie algebrat. Then there is
the following convexity theorem [10].

Theorem 4.1 [10]. Let (C(M), ω) be a symplectic cone with M compact, and letT ⊂
S0(C(M), ω) be a torus group. Assume further that there is an elementτ ∈ t such that
〈µ, τ 〉 > 0. Then the imageµ(C(M)) is a convex polyhedral cone.

Now let us return to the case of an arbitrary Lie groupG ⊂ S0(C(M), ω). Again we
identify M with M ×{1}. SinceG commutes with homotheties we get an induced action of
G on M, and by Proposition 3.2 we can identifyG with a Lie subgroup ofC(M, η). This
gives a moment map by restriction, viz.

µ : M → g∗,

µ = µ̃|M×{1}, µτ = η(Xτ ). (4.4)

Such a moment map was noticed previously by Geiges [11] and in [6] within the context
of 3-Sasakian geometry.

We wish to consider the special case when the Lie groupG is ann+1-dimensional torus
Tn+1. Let tn+1 denote the Lie algebra ofTn+1, and let{ei}ni=0 denote the standard basis for
tn+1 ≈ Rn+1. Corresponding to each basis elementei there is a vector fieldXei which for
convenience we denote byHi . We shall assume that the Reeb vector fieldξ corresponds to
an elementς , which we call thecharacteristic vector, in the Lie algebratn+1. Hence, the
Reeb vector field is almost periodic. In this case we say that the torus action isof Reeb type.
Let{e∗

i }ni=0 denote the dual basis oft∗n+1. Then we can write the corresponding characteristic
vectorς and moment mapµ as

ς =
n∑

i=0

aiei, µ =
n∑

i=0

µie
∗
i (4.5)

for someai ∈ R. Then the moment mapµ mapsς to the hyperplane given by

〈µ, ς〉 =
n∑

i=0

µiai = 1. (4.6)

We call this hyperplanethe characteristic hyperplane. The nondegeneracy ofη implies that
the plane defined by (4.6) is actually a hyperplane, i.e., its codimension is 1. Now there is
a commutative diagram

C(M)

↑ ↘µ̃

M
µ→ t∗n+1,

(4.7)

where the vertical arrow is the natural inclusionM intoC(M) asM×{1}. Thus, intersecting
the characteristic hyperplane (4.5) with the convex cone of Theorem 4.1 we arrive at the
following theorem.
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Theorem 4.2. Let (M, η) be a compact contact manifold with a fixed contact formη, and
let µ be the moment map of a torusT acting effectively onM which preserves the contact
form η. Suppose also that the Reeb vector fieldξ corresponds to an element of the Lie
algebrat of T, so that the torus action is of Reeb type. Then the imageµ(M) is a convex
compact polytope lying in the characteristic hyperplane.

This theorem was proved earlier by a different method by Banyaga and Molino [2,3],
and they also give an example due to Lutz which shows that the assumption on the Reeb
vector field is necessary.

We are mainly interested in rational polytopes. Let` ⊂ t denote the lattice of circle
subgroups ofT. We recall some definitions for convex polytopes [13,15,19].

Definition 4.3. A facetis a codimension 1 face. A convex polytope of dimensionn is called
simpleif there are preciselyn facets meeting at each vertex. A convex polytope1 ⊂ t∗ is
rational if, for someλi ∈ R, there areyi ∈ ` such that

1 =
N⋂

i=1

{α ∈ t∗|〈α, yi〉 ≤ λi},

whereN is the number of facets of1.

We are now ready for the following theorem.

Theorem 4.4. Under the hypothesis of Theorem4.2, the polytopeµ(M) ⊂ t∗ is simple of
dimensiondim t − 1, and it is rational if and only if the characteristic vectorς lies in the
lattice` ⊂ t of circle subgroups ofT.

Proof. The nondegeneracy ofη implies that the dimension of the polytope1 is dimt− 1,
and the fact that1 is the intersection of a convex polyhedral cone and a hyperplane implies
that1 is simple. To verify the rationality condition consider the characteristic foliationF ξ .
The space of leavesZ is a compact orbifold if and only ifς is in the latticè . So by the
quasi-regular version [17] of the Boothby–Wang fibration, this orbifold has a symplectic
structure. Moreover, sincet is Abelian and containsς, there is a Lie algebrât acting onZ
by infinitesimal symplectomorphisms which fits into the exact sequence

0 → {ς} → t
$→t̂→ 0,

where{ς} denotes the Lie algebra generated byς . Consider the dual sequence

0 → t̂∗$ ∗
→t∗ → {ς}∗ → 0. (4.8)

By a theorem of Lerman and Tolman [15] there is a moment mapµ̂ : Z → t̂∗ whose image
in t̂∗ is a rational convex polytopê1. Furthermore, ifπ : M → Z denotes the orbifold
V-bundle map andω the symplectic form onZ we have thatπ∗ω = dη. It follows that
$ ∗π∗µ̂ differs fromµ by a constantc ∈ t∗, i.e.

µ = $ ∗π∗µ̂ + c. (4.9)
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Moreover, sinceµ maps into the characteristic hyperplanec satisfies〈c, ς〉 = 1. Let 1
denote the polytopeµ(M). From Definition 4.3 we see that the polytope1 is rational if
and only if we can choose theyi to lie in `. But since1̂ is rational andα ∈ 1 if and only
if α − c ∈ 1̂, there areyi ∈ ` such that1̂ is determined by〈α̂, yi〉 ≤ λ̂i . Thus,1 is given
by the equation

N⋂
i=1

{α ∈ t∗|〈α, yi〉 ≤ λi = λ̂i + 〈c, yi〉},

which is clearly rational. �

For quasi-regular contact Pfaffian structures Eq. (4.9) gives the fundamental relation
between our contact moment map and the moment map for compact symplectic orbifolds
described by Lerman and Tolman. Moreover, in [15] it is shown that the polytope1̂ has
labels associated with each facet. The outward normal vectoryi to theith facetf̂i of 1̂ lies
in `, so there is a positive integermi and a primitive vectorpi ∈ ` such thatyi = mipi .
Thus, by associatingmi to theith facetfi for eachi = 1, . . . , N we obtain1̂ as a labeled
polytope. But from the discussion above the outward normalsyi to theith facetfi of 1

coincide with the outward normals tôfi of 1̂, so that1 is also a labeled polytope with
the integersmi associated to theith facetfi . Thus an immediate consequence of (4.9) and
Lemma 6.6 of [15] is the following theorem.

Theorem 4.5. Let (M, η) be a contact manifold with a fixed quasi-regular contact formη

with an effective action of a torusT of Reeb type that leaves the 1-formη invariant. For
every pointx ∈ M let F(x) denote the set of open facets of1 whose closure containsµ(x)

and letmi andpi denote the labels and primitive outward normal vectors to the ith facet.
Then the Lie algebrahx of the isotropy subgroupHx of T at x is the linear span of the
vectorspi for all i such that the ith open facetfi lies in F(x). In particular, if µ(x) is a
vertex of the polytope1, thenHx is isomorphic to the factor groupT/S1(ξ), whereS1(ξ)

denotes the circle subgroup generated by the characteristic vector fieldξ . Furthermore,1
is the convex hull of its vertices.

Let `x ∈ hx denote the lattice of circle subgroups ofHx and let ˆ̀x denote the sublattice
of ` generated by the vectors{mipi}fi∈F(x). Then the leaf holonomy group atx of the
characteristic foliationF ξ is isomorphic tò x/ ˆ̀

x . In particular, (M, η) is regular if and
only if the set{mipi}fi∈F(x) generates̀ x for all x ∈ M (in this casemi = 1∀i).

We now consider varying the contact formη within the contact structure. Letη′ = f η

wheref is a nowhere vanishing function onM, and letξ ′ be the Reeb vector field associated
to η′. Write ξ ′ = ξ + ρ. Suppose further thatX ∈ c(M, η). Then we have the following
elementary lemma whose proof we leave to the reader:

Lemma 4.6. The following hold:
(i) f = 1/(η(ρ) + 1);
(ii) ρcdη = −d(η(ρ)) + ξ(η(ρ))η;
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(iii) Lρη = Lξ ′η = ξ(η(ρ))η, i.e., bothξ ′ andρ are infinitesimal contact transformations;
(iv) ξ ′, ρ ∈ c(M, η) if and only iff ∈ C∞(M)ξ ;
(v) X ∈ c(M, η′) if and only if Xf= 0.

We return to the case when(M, η) is a contact manifold with an(n + 1)-torusTn+1

acting as strict contact transformations whose characteristic vectorς lies in the Lie algebra
tn+1. The moment map for this torus action is given by (4.5) withµi = η(Hi). If η′ = f η

is another 1-form in same contact structure wheref is invariant under the torus action, then
this action preservesη′ as well, and the corresponding moment mapµ′ satisfiesµ′ = f µ.
Let1 be the polytope associated withη. Then the polytope1′ associated toη′ has the same
dimension as1 with the same number of facets and the same number of vertices. The size
of the faces and labels, however, depend on the contact formη, i.e. on the Pfaffian structure,
and the labels are defined only whenη is quasi-regular. But in the projective spaceRPn+1

the lines through the origin intn+1 that intersect the latticèof circle subgroups are dense,
so from the point of view of the contact structure we can always perturb the Reeb vector
field and contact form so that the characteristic foliation is quasi-regular, and by Theorem
4.4 so that the polytope is rational. We are ready for the following definition.

Definition 4.7. A contact manifold (orbifold)(M,D) of dimension 2n+ 1 is called atoric
contact manifold(orbifold) (written as the triple(M,D,T)) if there is a 1-formη that
represents the contact structureD and an effective action of an(n + 1)-dimensional torus
T on M that preserves the contact formη. If in addition the Reeb vector field associated
to η corresponds to an element of the Lie algebrat of T, we say that(M,D,T) is a toric
contact manifold of Reeb type.

If we wish to fix a contact formη we write(M, η,T) for a toric contact manifold instead
of (M,D,T). Our discussion above proves the following proposition.

Proposition 4.8. Let (M,D,T) be a compact toric contact orbifold of Reeb type, thenD
can be represented by a quasi-regular contact form, and hence, by a rational polytope.

The fiduciary examples of compact contact manifolds are the odd dimensional spheres
S2n+1.

Example 4.9. S2n+1 with the standard contact structure. This is the contact structure in-
duced from the standard symplectic structure onR2n+2 given in Cartesian coordinates
(x0, y0, . . . , xn, yn) ∈ R2n+2 by

ω = 2
n∑

i=0

dxi ∧ dyi.

In this case the standard contact formη and the standard characteristic vector fieldξ are
given by

η = 1

r

n∑
i=0

(xi dyi − yi dxi), ξ =
n∑

i=0

(xi∂yi
− yi∂xi

),
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wherer = ∑n
i=0(x

2
i + y2

i ) (not the usualr). The maximal torusTn+1 is generated by the
vector fieldsHi = xi∂yi

− yi∂xi
for i = 0, . . . , n, so(S2n+1, η) is a toric contact manifold.

The moment map is easily seen to be

µ(x0, y0, . . . , xn, yn) = 1

r

n∑
i=0

(x2
i + y2

i )e∗
i .

Lettingr0, . . . , rn denote the coordinates fort∗n+1 we see that the characteristic hyperplane
is just

r0 + · · · + rn = 1.

Thus, the imageµ(S2n+1) is just the standardn-simplex withri ’s as barycentric coordinates.

Now we can consider non-standard characteristic vector fields and Pfaffian forms within
the standard contact structure onS2n+1. These are deformations [18] of the standard form
depending onn + 1 positive real parameters(a0, . . . , an) ∈ (R+)n+1. In this case the
1-formη and characteristic vector fields are given by

ηa =
∑n

i=0(xi dyi − yi dxi)∑n
i=0ai(x

2
i + y2

i )
, ξa =

n∑
i=0

ai(xi∂yi
− yi∂xi

),

so that

ηa =
(

r∑n
i=0ai(x

2
i + y2

i )

)
η.

The characteristic hyperplane is
n∑

i=0

airi = 1,

so the polytope is given by the “weighted”n-simplex determined by this and

0 ≤ ri ≤ 1

ai

.

The special case whereai = a for all i = 0, . . . , n is just the dilated standardn-simplex

a(r0 + · · · + rn) = 1, 0 ≤ ri ≤ 1

a
.

5. A Delzant theorem for toric contact manifolds of Reeb type

We begin by considering contact reduction [6,11]. Let(M̃, η̃) be a compact contact man-
ifold with a fixed quasi-regular contact form̃η. Suppose also that a compact Lie groupG
acts onM̃ preserving the contact form̃η and letµ : M̃ → g∗ denote the corresponding mo-

ment map. Then ifG acts freely on the zero setµ−1(0)
ι

↪→M̃, the quotientM = µ−1(0)/G

is a compact contact manifold with a unique fixed 1-formη satisfyingι∗η̃ = p∗η, where
p : µ−1(0) → M denotes the natural projection.

We shall prove the following theorem.
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Theorem 5.1. Let (M, η,T) be a compact toric contact manifold of Reeb type and a fixed
quasi-regular contact formη. Then(M, η) is isomorphic to the reduction by a torus of a
sphereS2N−1 with its standard contact structure and with a fixed1-formηa.

Proof. Now M is compact of dimension, say, 2n + 1, and sinceη is quasi-regular, the
space of leavesZ of the characteristic foliationF is a compact symplectic orbifold of
dimension 2n. Furthermore, sinceM is toric, so isZ, i.e. there is ann dimensional torusTn

preserving the symplectic structureω onZ. Furthermore, by [5]ω represents an integral
class inH 2

orb(Z,Z) andM is the total space of the principalS1 V-bundleM
π→Z whose

first Chern class is represented by dη = π∗ω.
Now by Theorem 8.1 of Lerman and Tolman [15](Z, ω) is isomorphic to the sym-

plectic reduction(CN, ω0) with the standard symplectic structure by a torusTN−n of
dimensionN − n. If µN−n : CN → t∗N−n denotes the moment map for theTN−n ac-

tion, then (Z, ω) is isomorphic to(µ−1
N−n(λ)/TN−n, ω̂) whereλ is a regular value of

µN−n and ω̂ is the unique symplectic 2-form induced by reduction. Letφ̂ denote the
above isomorphism. It follows that the cohomology class ofω̂ = (φ̂−1)∗ω is integral in
H 2

orb(µ
−1
N−n(λ)/TN−n,Z). By the orbifold version of the Boothby–Wang theorem there is

anS1 V-bundleπ : P → µ−1
N−n(λ)/TN−n, a connection form̂η onP such that d̂η = π̂∗ω̂.

Thus there is anS1-equivariant V-bundle map

M
φ→ P

↓ π ↓ π̂

Z
φ̂→ µ−1

N−n(λ)/TN−n

(5.1)

such thatφ∗dη̂ = dη. Thus,φ∗η̂ andη differ by a closed 1-form. But the space of closed
1-forms onM is path-connected, so one can find a one parameter family of connections
having the same curvature that connectφ∗η̂ to η. So by Gray’s stability theorem [16]
φ∗η̂ andη define the same contact structure. Thus, we can chooseφ∗η̂ = η. Moreover, by
equivariance the characteristic vectorς of the contact manifold(P, η̂) lies in the Lie algebra
tN−n, so we can split off the circle that it generates and writeTN−n = S1

ς ×TN−n−1, where

TN−n−1 is an (N − n − 1)-dimensional torus. It follows thatP = µ−1
N−n(λ)/TN−n−1.

Hereafter, we identify(M, η) with (µ−1
N−n(λ)/TN−n−1, η̂). Nowµ−1

N−n(λ) is a torus bundle
over a compact manifold, so it is a compact manifold which by construction is an intersection
of N −n real quadrics inCN . It follows that there is a component of the moment mapµN−n

which takes the form
∑

iai |zi |2 with ai > 0 for all i. Letadenote the vector inRN whoseith
component isai , and consider the ellipsoid6a = {∑iai |zi |2 = 1} ∼= S2N−1. Then there is
aTN−n-moment mapνa : 6a → t∗N−n such thatν−1

a (0) = µ−1
N−n(λ). Furthermore, letting

η0 = ∑
i (xi dyi − yi dxi) we see that dη0 = ω0 onCN and thatη0|6a = ηa|6a, where

ηa is the deformed 1-form of Example 4.9. Thus, lettingp : µ−1
N−n(λ) → M denote the

natural submersion, andι : µ−1
N−n(λ) → 6a the natural inclusion, we see thatp∗η = ι∗ηa,

so(M, η) is obtained from(6a, ηa) by contact reduction. �
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Now Theorem 9.1 of [15] says that every symplectic toric orbifold possesses an invariant
complex structure which is compatible with its symplectic form. This means that every
symplectic toric orbifold is actually Kähler and we can combine this fact with our results
to get the following theorem.

Theorem 5.2. Every compact toric contact manifold of Reeb type admits a compatible
invariant Sasakian structure.
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